3 является целым числом. Числа: натуральные, целые, рациональные, действительные. Обыкновенные и десятичные дроби. Целые отрицательные числа

Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.

Рассмотрим пример:
Днем на улице была температура 3 градуса. К вечеру температура снизилась на 3 градуса.
3-3=0
На улице стало 0 градусов. А ночью температура снизилась на 4 градуса и стало показывать на термометре -4 градуса.
0-4=-4

Ряд целых чисел.

Натуральными числами мы такую задачу описать мы не сможем, рассмотрим эту задачу на координатной прямой.

У нас получился ряд чисел:
…, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …

Этот ряд чисел называется рядом целых чисел .

Целые положительные числа. Целые отрицательные числа.

Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами . А слева от нуля идут целые отрицательные числа.

Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.

– это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.

Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.

Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.

Например:
Возьмем целые числа от -2 до 4. Все числа, стоящие между этими числами, входят в конечное множество. Наше конечное множество чисел выглядит так:
-2, -1, 0, 1, 2, 3, 4.

Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.


Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.

Это числа, которые используются при счете: 1, 2, 3... и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N .

Целые числа. Положительные и отрицательные числа

Два числа отличающиеся друг от друга только знаком, называются противоположными , например, +1 и -1, +5 и -5. Знак "+" обычно не пишут, но предполагают, что перед числом стоит "+". Такие числа называются положительными . Числа, перед которыми стоит знак "-", называются отрицательными .

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z .

Рациональные числа

Это конечные дроби и бесконечные периодические дроби. Например,

Множество рациональных чисел обозначается Q . Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например:

Множество иррациональных чисел обозначается J .

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R .

Округление чисел

Рассмотрим число 8,759123... . Округлить до целой части означает записать лишь ту часть числа, которая находится до запятой. Округлить до десятых означает записать целую часть и после запятой одну цифру; округлить до сотых - после запятой две цифры; до тысячных - три цифры и т.д.

Натуральные числа - это те числа, с которых когда-то всё началось. И сегодня это первые числа, с которыми встречается в своей жизни человек, когда в детстве учится считать на пальцах или счетных палочках.

Определение: натуральными называют числа, которые используют для счета предметов (1, 2, 3, 4, 5, ...) [Число 0 не является натуральным. Оно и в истории математики имеет свою отдельную историю и появилось много позже натуральных чисел.]

Множество всех натуральных чисел (1, 2, 3, 4, 5, ...) обозначают буквой N.

Целые числа

Научившись считать, следующее, что мы делаем - это учимся производить над числами арифметические действия. Обычно сначала (на счетных палочках) учатся выполнять сложение и вычитание.

Со сложением всё понятно: сложив любые два натуральных числа, в результате всегда получим тоже натуральное число. А вот в вычитании обнаруживаем, что из меньшего отнять большее так, чтобы в результате получилось натуральное число, мы не можем. (3 − 5 = чему?) Здесь возникает идея отрицательных чисел. (Отрицательные числа уже не являются натуральными)

На этапе возникновения отрицательных чисел (а они появились позже дробных) существовали и их противники, считавшие их бессмыслицей. (Три предмета можно показать на пальцах, десять можно показать, тысячу предметов можно представить по аналогии. А что такое "минус три мешка"? — В то время числа хоть уже и использовались сами по себе, в отрыве от конкретных предметов, количество которых они обозначают, всё ещё были в сознании людей гораздо ближе к этим конкретным предметам, чем сегодня.) Но, как и возражения, так и основной аргумент в пользу отрицательных чисел, пришел из практики: отрицательные числа позволяли удобно вести счет долгам. 3 − 5 = −2 — у меня было 3 монеты, я потратила 5. Значит, у меня не просто закончились монеты, но и 2 монеты я кому-то должна. Если верну одну, долг изменится −2+1=−1, но тоже может быть представлен отрицательным числом.

В итоге, отрицательные числа появились в математике, и теперь у нас есть бесконечное количество натуральных чисел (1, 2, 3, 4, ...) и есть такое же количество им противоположных (−1, −2, −3, −4, ...). Добавим к ним ещё 0. И множество всех этих чисел будем называть целыми.

Определение: Натуральные числа, им противоположные и нуль составляют множество целых чисел. Оно обозначается буквой Z.

Любые два целых числа можно вычесть друг из друга или сложить и получить в результате целое число.

Идея сложения целых чисел уже предполагает возможность умножения, как просто более быстрого способа выполнения сложения. Если у нас есть 7 мешков по 6 килограмм, мы можем складывать 6+6+6+6+6+6+6 (семь раз прибавлять к текущей сумме по 6), а можем просто помнить, что такая операция всегда будет давать в результате 42. Как и сложение шести семерок 7+7+7+7+7+7 тоже всегда будет давать 42.

Результаты операции сложения определенного числа самого с собой определенное количество раз для всех пар чисел от 2 до 9 выписываются и составляют таблицу умножения. Для умножения целых чисел больше 9 придумывается правило умножения в столбик. (Которое распространяется и на десятичные дроби, и которое будет рассматриваться в одной из следующих статей.) При умножении любых двух целых чисел друг на друга всегда получим в результате целое число.

Рациональные числа

Теперь деление. По аналогии с тем, как вычитание является обратной операцией для сложения, приходим к идее деления как обратной операции для умножения.

Когда у нас было 7 мешков по 6 килограмм, с помощью умножения мы легко посчитали, что общий вес содержимого мешков составляет 42 килограмма. Представим себе, что мы высыпали всё содержимое всех мешков в одну общую кучу массой 42 килограмма. А потом передумали, и захотели распределить содержимое обратно по 7 мешкам. Сколько килограмм при этом попадет в один мешок, если будем распределять поровну? – Очевидно, что 6.

А если захотим распределить 42 килограмма по 6 мешкам? Тут мы подумаем о том, что те же общие 42 килограмма могли бы получиться, если бы мы высыпали в кучу 6 мешков по 7 килограмм. И значит при делении 42 килограмм на 6 мешков поровну получим в одном мешке по 7 килограмм.

А если разделить 42 килограмма поровну по 3 мешкам? И здесь тоже мы начинаем подбирать такое число, которое при умножении на 3 дало бы 42. Для «табличных» значений, как в случае 6 ·7=42 => 42:6=7, мы выполняем операцию деления, просто вспоминая таблицу умножения. Для более сложных случаев используется деление в столбик, которое будет рассмотрено в одной из следующих статей. В случае 3 и 42 можно «подбором» вспомнить, что 3 ·14 = 42. Значит, 42:3=14. В каждом мешке будет по 14 килограмм.

Теперь попробуем разделить 42 килограмма поровну на 5 мешков. 42:5=?
Замечаем, что 5 ·8=40 (мало), а 5·9=45 (много). То есть, ни по 8 килограмм в мешке, ни по 9 килограмм, из 5 мешков мы 42 килограмма никак не получим. При этом понятно, что в реальности разделить любое количество (крупы, например,) на 5 равных частей нам ничего не мешает.

Операция деления целых чисел друг на друга не обязательно дает в результате целое число. Так мы пришли к понятию дроби. 42:5 = 42/5 = 8 целых 2/5 (если считать в обыкновенных дробях) или 42:5=8,4 (если считать в десятичных дробях).

Обыкновенные и десятичные дроби

Можно сказать, что любая обыкновенная дробь m/n (m – любое целое, n – любое натуральное) представляет собой просто специальную форму записи результата деления числа m на число n. (m называют числителем дроби, n – знаменателем) Результат деления, например, числа 25 на число 5 тоже можно записать в виде обыкновенной дроби 25/5. Но в этом нет необходимости, так как результат деления 25 на 5 может быть записан просто целым числом 5. (И 25/5 = 5). А вот результат деления числа 25 на число 3 уже не может быть представлен целым числом, поэтому здесь и возникает необходимость использования дроби, 25:3=25/3. (Можно выделить целую часть 25/3= 8 целых 1/3. Более подробно обыкновенные дроби и операции с обыкновенными дробями будут рассмотрены в следующих статьях.)

Обыкновенные дроби хороши тем, что, чтобы представить такой дробью результат деления любых двух целых чисел, нужно просто записать делимое в числитель дроби, а делитель в знаменатель. (123:11=123/11, 67:89=67/89, 127:53=127/53, …) Затем по возможности сократить дробь и/или выделить целую часть (эти действия с обыкновенными дробями будут подробно рассмотрены в следующих статьях). Проблема в том, что производить арифметические действия (сложение, вычитание) с обыкновенными дробями уже не так удобно, как с целыми числами.

Для удобства записи (в одну строку) и для удобства вычислений (с возможностью вычислений в столбик, как для обычных целых чисел) кроме обыкновенных дробей придуманы ещё и десятичные дроби. Десятичная дробь – это специальным образом записанная обыкновенная дробь со знаменателем 10, 100, 1000 и т.п. Например, обыкновенная дробь 7/10 – это то же, что и десятичная дробь 0,7. (8/100 = 0,08; 2 целых 3/10=2,3; 7 целых 1/1000 = 7, 001). Переводу обыкновенных дробей в десятичные и наоборот будет посвящена отдельная статья. Операциям с десятичными дробями – другие статьи.

Любое целое число может быть представлено в виде обыкновенной дроби со знаменателем 1. (5=5/1; −765=−765/1).

Определение: Все числа, которые могут быть представлены в виде обыкновенной дроби, называют рациональными числами. Множество рациональных чисел обозначают буквой Q.

При делении любых двух целых чисел друг на друга (кроме случая деления на 0) всегда получим в результате рациональное число. Для обыкновенных дробей есть правила сложения, вычитания, умножения и деления, позволяющие произвести соответствующую операцию с любыми двумя дробями и получить в результате также рациональное число (дробь или целое).

Множество рациональных чисел – это первое из рассмотренных нами множеств, в котором можно и складывать, и вычитать, и умножать, и делить (кроме деления на 0), никогда не выходя за пределы этого множества (то есть, всегда получая в результате рационально число).

Казалось бы, других чисел не существует, все числа рациональные. Но и это не так.

Действительные числа

Существуют такие числа, которые нельзя представить в виде дроби m/n (где m-целое, n-натуральное).

Какие же это числа? Мы ещё не рассмотрели операцию возведения в степень. Например, 4 2 =4 ·4 = 16. 5 3 =5 ·5 ·5=125. Как умножение представляет собой более удобную форму записи и вычисления сложения, так и возведение в степень – это форма записи умножения одного и того же числа самого на себя определенное количество раз.

Но теперь рассмотрим операцию, обратную возведению в степень – извлечение корня. Квадратный корень из 16 – это число, которое в квадрате даст 16, то есть число 4. Квадратный корень из 9 – это 3. А вот квадратный корень из 5 или из 2, например, не может быть представлен рациональным числом. (Доказательство этого утверждения, другие примеры иррациональных чисел и их историю можно посмотреть, например, в Википедии)

В ГИА в 9 классе есть задание на определение того, является ли число, содержащее в своей записи корень, рациональным или иррациональным. Задача заключается в том, чтобы попытаться преобразовать это число к виду, не содержащему корень (используя свойства корней). Если от корня не удается избавиться, то число иррациональное.

Другим примером иррационального числа является число π, знакомое всем из геометрии и тригонометрии.

Определение: Рациональные и иррациональные числа вместе называют действительными (или вещественными) числами. Множество всех действительных чисел обозначают буквой R.

В действительных числах, в отличии от рациональных, мы можем выразить расстояние между любыми двумя точками на прямой или на плоскости.
Если нарисовать прямую и выбрать на ней две произвольные точки или выбрать две произвольные точки на плоскости, то может так получиться, что точное расстояние между этими точками невозможно выразить рациональным числом. (Пример – гипотенуза прямоугольного треугольника с катетами 1 и 1 по теореме Пифагора будет равна корню из двух – то есть иррациональному числу. Сюда же относится точная длина диагонали тетрадной клетки (длина диагонали любого идеального квадрата с целыми сторонами).)
А в множестве действительных чисел любые расстояния на прямой, в плоскости или в пространстве могут быть выражены соответствующим действительным числом.

1) Делю сразу на, так как оба числа 100% делятся на:

2) Разделю на оставшиеся большие числа (и), так как и без остатка делятся на (при этом, раскладывать не буду - он и так общий делитель):

6 2 4 0 = 1 0 ⋅ 4 ⋅ 1 5 6

6 8 0 0 = 1 0 ⋅ 4 ⋅ 1 7 0

3) Оставлю и в покое и начну рассматривать числа и. Оба числа точно делятся на (заканчиваются на четные цифры (в таком случае представляем как, а можно разделить на)):

4) Работаем с числами и. Есть ли у них общие делители? Так легко, как в предыдущих действиях, и не скажешь, поэтому дальше просто разложим их на простые множители:

5) Как мы видим, мы были правы: у и общих делителей нет, и теперь нам нужно перемножить.
НОД

Задача №2. Найти НОД чисел 345 и 324

Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Точно, НОД, а я изначально не проверила признак делимости на, и, возможно, не пришлось бы делать столько действий.

Но ты-то проверил, верно?

Как видишь, это совсем несложно.

Наименьшее общее кратное (НОК) - экономит время, помогает решить задачи нестандартно

Допустим, у тебя есть два числа - и. Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае.

Из этого простого примера вытекает несколько правил.

Правила быстрого нахождения НОК

Правило 1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным.

Найди у следующих чисел:

  • НОК (7;21)
  • НОК (6;12)
  • НОК (5;15)
  • НОК (3;33)

Конечно, ты без труда справился с этой задачей и у тебя получились ответы - , и.

Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.

Например, НОК (7;14;21) не равно 21, так как не делится без остатка на.

Правило 2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.

Найди НОК у следующих чисел:

  • НОК (1;3;7)
  • НОК (3;7;11)
  • НОК (2;3;7)
  • НОК (3;5;2)

Посчитал? Вот ответы - , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

Потренируемся?

Найдем наименьшее общее кратное - НОК (345; 234)

Раскладываем каждое число:

Почему я сразу написал?

Вспомни признаки делимости на: делится на (последняя цифра - четная) и сумма цифр делится на.

Соответственно, можем сразу разделить на, записав ее как.

Теперь выписываем в строчку наиболее длинное разложение - второе:

Добавим к нему числа из первого разложения, которых нет в том, что мы выписали:

Заметь: мы выписали все кроме, так как она у нас уже есть.

Теперь нам необходимо все эти числа перемножить!

Найди наименьшее общее кратное (НОК) самостоятельно

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК ? Мое время - 2 минуты, правда я знаю одну хитрость , которую предлагаю тебе открыть прямо сейчас!

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все.

Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:

Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и.

Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК ), мы можем найти НОК (или НОД ) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Вот и все.

Запишем правило в общем виде:

Попробуй найти НОД , если известно, что:

Справился? .

Отрицательные числа - «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Казалось бы, что в них такого особенного?

А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание».

Действительно, из вычесть - вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел».

Отрицательные числа долго не признавались людьми.

Так, Древний Египет, Вавилон и Древняя Греция - светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии.

Как ты думаешь, с чем связано это признание?

Правильно, отрицательными числами стали обозначать долги (иначе - недостачу).

Считалось, что отрицательные числа - это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие.

Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю - к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи - это его рук дело (прозвище Леонардо Пизанского - Фибоначчи)).

Так, в XVII веке Паскаль считал что.

Как думаешь, чем он это обосновывал?

Верно, «ничто не может быть меньше НИЧЕГО».

Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом - минусом «-». И правда: . Число « » положительное, которое вычитается из, или отрицательное, которое суммируется к?... Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

пропорция

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или) чисел) в 1831 году поставил точку.

Он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике - особенное число.

С первого взгляда, это ничто: прибавить, отнять - ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального.

Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть, мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная.

След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего».

Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто - ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа).

Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » - составляющая числа.

В Европу ноль также пришел с запозданием - лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» — пишет американский математик Чарльз Сейф.

Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

На просторах интернета можно встретить фразу: «Ноль - самая могущественная сила во Вселенной, он может всё! Ноль создаёт порядок в математике, и он же вносит в неё хаос». Абсолютно верно подмечено:)

Краткое изложение раздела и основные формулы

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным;
  • ноль - " "

Множество целых чисел обозначается буквой Z.

1. Натуральные числа

Натуральные числа - это числа, которые мы употребляем для счета предметов.

Множество натуральных чисел обозначается буквой N.

В операциях с целыми числами понадобится умение находить НОД и НОК.

Наибольший общий делитель (НОД)

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Наименьшее общее кратное (НОК)

Чтобы найти НОК необходимо:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

2. Отрицательные числа

это числа, противоположные натуральным, то есть:

Теперь я хочу слышать тебя...

Надюсь ты оценил супер-полезные "трюки" этого раздела и понял как они помогут тебе на экзамене.

И что более важно - в жизни. Я об этом не говорю, но, поверь, этот так. Умение быстро и без ошибок считать спасает во многих жизненных ситуациях.

Теперь твой ход!

Напиши, будешь ли ты применять методы группировки, признаки делимости, НОД и НОК в расчетах?

Может быть ты применял их ранее? Где и как?

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях как тебе статья.

И удачи на экзаменах!

В данной статье определим множество целых чисел, рассмотрим, какие целые называются положительными, а какие отрицательными. Также покажем, как целые числа используются для описания изменения некоторых величин. Начнем с определения и примеров целых чисел.

Целые числа. Определение, примеры

Вначале вспомним про натуральные числа ℕ . Само название говорит о том, что это такие числа, которые естественно использовались для счета с незапамятных времен. Для того, чтобы охватить понятие целых чисел, нам нужно расширить определение натуральных чисел.

Определение 1. Целые числа

Целые числа - это натуральные числа, числа, противоположные им, и число нуль.

Множество целых чисел обозначается буквой ℤ .

Множество натуральных чисел ℕ - подмножество целых чисел ℤ . Любое натуральное число является целым, но не любое целое число является натуральным.

Из определения следует, что целым является любое из чисел 1 , 2 , 3 . . , число 0 , а также числа - 1 , - 2 , - 3 , . .

В соответствии с этим, приведем примеры. Числа 39 , - 589 , 10000000 , - 1596 , 0 являются целыми числами.

Пусть координатная прямая проведена горизонтально и направлена вправо. Взглянем на нее, чтобы наглядно представить расположение целых чисел на прямой.

Началу отсчета на координатной прямой соответствует число 0 , а точкам, лежащим по обе стороны от нуля соответствуют положительные и отрицательные целые числа. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, отложив от начала координат некоторое количество единичных отрезков.

Положительные и отрицательные целые числа

Из всех целых чисел логично выделить положительные и отрицательные целые числа. Дадим их определения.

Определение 2. Положительные целые числа

Положительные целые числа - это целые числа со знаком "плюс".

Например, число 7 - целое число со знаком плюс, то есть положительное целое число. На координатной прямой это число лежит справа от точки отсчета, за которую принято число 0 . Другие примеры положительных целых чисел: 12 , 502 , 42 , 33 , 100500 .

Определение 3. Отрицательные целые числа

Отрицательные целые числа - это целые числа со знаком "минус".

Примеры целых отрицательных чисел: - 528 , - 2568 , - 1 .

Число 0 разделяет положительные и отрицательные целые числа и само не является ни положительным, ни отрицательным.

Любое число, противоположное положительному целому числу, в силу определения, является отрицательным целым числом. Справедливо и обратное. Число, обратное любому отрицательному целому числу, есть положительное целое число.

Можно дать другие формулировки определений отрицательных и положительных целых чисел, используя их сравнение с нулем.

Определение 4. Положительные целые числа

Положительные целые числа - это целые числа, которые больше нуля.

Определение 5. Отрицательные целые числа

Отрицательные целые числа - это целые числа, которые меньше нуля.

Соответственно, положительные числа лежат правее начала отсчета на координатной прямой, а отрицательные целые числа находятся левее от нуля.

Ранее мы уже говорили, что натуральные числа - это подмножество целых. Уточним этот момент. Множество натуральных чисел составляют целые положительные числа. В свою очередь, множество отрицательных целых чисел является множеством чисел, противоположных натуральным.

Важно!

Любое натуральное число можно назвать целым, но любое целое число нельзя назвать натуральным. Отвечая на вопрос, являются ли являются ли отрицательные числа натуральными, нужно смело говорить - нет, не являются.

Неположительные и неотрицательные целые числа

Дадим определения.

Определение 6. Неотрицательные целые числа

Неотрицательные целые числа - это положительные целые числа и число нуль.

Определение 7. Неположительные целые числа

Неположительные целые числа - это отрицательные целые числа и число нуль.

Как видим, число нуль не является ни положительным, ни отрицательным.

Примеры неотрицательных целых чисел: 52 , 128 , 0 .

Примеры неположительных целых чисел: - 52 , - 128 , 0 .

Неотрицательное число - это число, большее или равное нулю. Соответственно, неположительное целое число - это число, меньшее или равное нулю.

Термины "неположительное число" и "неотрицательное число" используются для краткости. Например, вместо того, чтобы говорить, что число a - целое число, которое больше или равно нулю, можно сказать: a - целое неотрицательное число.

Использование целых чисел при описании изменения величин

Для чего используются целые числа? В первую очередь, с их помощью удобно описывать и определять изменение количества каких-либо предметов. Приведем пример.

Пусть на складе хранится какое-то количество коленвалов. Если на склад привезут еще 500 коленвалов, то их количество увеличится. Число 500 как раз и выражает изменение (увеличение) количества деталей. Если потом со склада увезут 200 деталей, то это число также будет характеризовать изменение количества коленвалов. На этот раз, в сторону уменьшения.

Если же со склада ничего не будут забирать, и ничего не будут привозить, то число 0 укажет на неизменность количества деталей.

Очевидное удобство использования целых чисел в отличие от натуральных в том, что их знак явно указывает на направление изменения величины (увеличение или убывание).

Понижение температуры на 30 градусов можно охарактеризовать отрицательным числом - 30 , а увеличение на 2 градуса - положительным целым числом 2 .

Приведем еще один пример с использованием целых чисел. На этот раз, представим, что мы должны отдать кому-то 5 монет. Тогда, можно сказать, что мы обладаем - 5 монетами. Число 5 описывает размер долга, а знак "минус" говорит о том, что мы должны отдать монеты.

Если мы должны 2 монеты одному человеку, а 3 - другому, то общий долг (5 монет) можно вычислить по правилу сложения отрицательных чисел:

2 + (- 3) = - 5

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter